

RF Technology for 5G mmWave Basestations

Thomas Cameron, PhD Analog Devices

Agenda

- mmWave Deployment
 - Path Loss
 - Typical Link Budget
- Beamforming architectures
 - Analog
 - Hybrid
- Bits-to-mmWave radio
- Q&A

5G mmWave Deployment Scenarios

Reference: T. S. Rappaport et al, "Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-with a focus on Propagation Models," in IEEE Transactions on Antennas and Propagation, Special Issue on 5G, Nov. 2017

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

Link Budget Example

Link Budget 200m link @ 28GHz	Downlink (Access Point)	Uplink (CPE)
Total Conducted PA power	+33dBm	+19 dBm
Antenna Gain	27 dB	21
TX EIRP	60 dBm	40dBm
Path Loss	135dB	135 dB
Received Power	-75dBm	-95 dBm
Thermal noise floor	-85 dBm	-85dBm
RX Noise Figure	5dB	5dB
SNR per RX element	5dB	-15dB
RX Antenna Gain	21dB	27dB
RX SNR after beamforming	+26dB	+12dB

Beamforming Architectures

Analog Beamforming	Digital Beamforming	Hybrid Beamforming
Beam formed by weighting RF paths	Beam formed by weighting digital paths	Beamforming a combination of analog and digital
Low power/complexity	Highest power / complexity	Moderate power/complexity
Good for coverage	Highest capacity / flexibility	Compromise between analog and digital
Single beam – single data stream	Frequency selective beamforming	Best choice with existing technology

Analog Beamformer

CMOS		
		SiGe
		GaAs/GaN

Analog Beamformer

TX Array Gain and PA Output Power vs Array Size at Fixed EIRP

Assumptions:

- 60dBm EIRP per beam
- 3-4 GHz IF, 800MHz BW
- PAPR =9 dB
- 2dB switch loss

Analog Beamformer

TX Array Gain and PA Output Power vs Array Size at Fixed EIRP

Assumptions:

- 60dBm EIRP per beam
- 3-4 GHz IF, 800MHz BW
- PAPR =9 dB
- 2dB switch loss

Technology Fit Per Radio Form Factor

- Higher EIRP pushes PA technology toward III-V
- Lower EIRP allows for highly integrated silicon based solutions
- Larger array allows for the use of silicon PAs
- Larger array adds complexity and cost

Technology Fit Per Radio Form Factor

- UE is clearly in CMOS technology domain
- CPE spans CMOS and SiGe BiCMOS
- Low power access point spans CMOS, SiGe BiCMOS and GaAs
- High power access point spans GaAs and GaN

Analog Beamformer Power Consumption

TX and RX DC Power Consumption vs Array Size at Fixed EIRP

- Overlay TX and RX power consumption
- Optimum array size between 128 and 256 elements
- Power consumption ~80 to 100 W

High Integration Beamformer Assembly

Antenna on Substrate

- Compact implementation
- Supports wide range of beamforming in both vertical and horizontal
- Scalable for higher EIRP
- Thermal challenges
- Difficult to implement front end filters

Semi-Integrated Analog Beamformer

Integrated Beamformer with TR Module

CMOS	
SiGe	GaAS/Gan

Semi-Integrated Analog Beamformer

 Opt to drive a sub-array with each PA to leverage the array gain

Pros:

- 8X less PAs and beamformer ICs
- Planar implementation
- Printed front end filters possible
- Conventional thermal management
- Scalable for very high EIRP

Cons:

Reduced scanning capability

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

Hybrid Beamformer

- Combines digital and analog beamforming to enable spatial multiplexing
- If m=8 and n = 128 then total array size is 1024
- While scalable the power consumption adds up very quickly

Bits-to-mmWave Radio

Reference: 5G Millimeter Wave Basestation,

http://www.analog.com/en/education/education-library/videos/5804450511001.html

Summary

- 5G mmWave use cases emerging
- Fixed in near term → nomadic → mobile in future
- Various approaches to beamforming
 - Analog Beamforming
 - Most efficient implementation with existing technology
 - Digital Beamforming in future
- Bit-to-mmWave Radio
 - Requires leading edge technology available now!