Characterizing PDN Pollution, Part 2 Real-time Spectral Analysis of Power Rails

Agenda

- Reminder: what is power integrity?
- Why spectral analysis?
 - What specific power integrity problems benefit from this approach?
- Time-domain vs frequency-domain analysis
 - Time-domain figures of merit
 - Basics of the Fourier transform
 - Relationships between time-domain and frequency-domain characteristics
 - FFT settings and their effects
 - Interpreting the spectrum's vertical scale
- Examples
 - Simple sine-wave generator
 - Tracking down PDN noise

TELEDYNE LECROY Everywherevoulook

What is Dowor	Intogrity	(and why	dowo	α
	megniy	and wrig		care:)

Power Integrity concerns maintaining the **quality** of power from generation to consumption. High power integrity means **noise levels** that are within tolerance.

Power Integrity is typically analyzed at:

- The PDN (Power Distribution Network)
- On-die (within devices that consume power)

TELEDYNE LECROY

Performance feature	Noise tolerance
Receiver reference voltage level shifts	~ 5% rail
Jitter on core logic gates	~ 5% rail
Jitter on data lines	~ 1-5% rail
Jitter on re-timers, clock distribution, generator circuits	~ 1-5% rail
Voltage on ADC voltage reference	< 1% rail
Voltage on analog signal circuits	< 1% rail
Voltage noise at carrier freq on rf reciever circuits	< 1% rail

Why spectral analysis?

The Power Distribution Network

The board-level Power Distribution Network (PDN) consists of:

- Regulation modules (VRMs) between the bulk supply and components that consume power
- Board interconnects (traces, planes) distributing power from VRMs to devices
- Capacitors

4

How do we go from the time domain to the frequency domain"?

The Fourier Integral:

$$\mathsf{F}(\mathsf{f}) = \int_{-\infty}^{+\infty} \mathsf{f}(\mathsf{t}) \mathsf{e}^{-\mathsf{j} 2\pi \mathsf{f} \mathsf{t}} \mathsf{d} \mathsf{t}$$

- The discrete Fourier transform:
 - ONLY applies to periodic waveforms with period T₀
 - Each frequency component is n x 1/T₀

$$\mathbf{a}_{0} = \frac{1}{T_{0}} \int_{0}^{T_{0}} V(t) \, dt \qquad \mathbf{a}_{n} = \frac{2}{T_{0}} \int_{0}^{T_{0}} V(t) \cos\left(\frac{2\pi}{T_{0}} nt\right) dt \qquad \mathbf{b}_{n} = \frac{2}{T_{0}} \int_{0}^{T_{0}} V(t) \sin\left(\frac{2\pi}{T_{0}} nt\right) dt \qquad \text{Amplitude}_{n} = \sqrt{\mathbf{a}_{n}^{2} + \mathbf{b}_{n}^{2}} dt = \frac{1}{T_{0}} \int_{0}^{T_{0}} V(t) dt = \frac{1}$$

Fast Fourier Transform (FFT): same as DFT, but limited to 2ⁿ points

Translating from time domain to frequency domain			
-			
Time domain characteristic T_0 : Timebase or FFT window (in seconds)	Frequency domain characteristic Frequency resolution (in Hz) FFT bin size (in Hz) Lowest (non-DC) frequency point (in Hz		
F _S : Sample rate, S/sec	Highest frequency value: $f_{max} = \frac{1}{2}$ Sample rate (Nyquist frequency of sample rate)		
Bandwidth of the scope's amplifier	Frequency where response is – 3 dB down from pass band value		

to frequency domain
Frequency domain characteristic
Frequency resolution (in Hz) FFT bin size (in Hz) Lowest (non-DC) frequency point (in Hz
Highest frequency value: f _{max} = ½ Sample rate (Nyquist frequency of sample rate)
Frequency where response is – 3 dB down from pass band value

Translating	from	time	domain	to	frequency	v domain
Translating		unic	uomani	l U	nequence	y uomann

lime domain characteristic	Frequency domain characteristic
${f T_0}$: Timebase or FFT window (in seconds)	Frequency resolution (in Hz) FFT bin size (in Hz) Lowest (non-DC) frequency point (in Hz
F_s: Sample rate, S/sec	Highest frequency value: f _{max} = ½ Sample rate (Nyquist frequency of sample rate)
Bandwidth of the scope's amplifier	Frequency where response is – 3 dB down from pass band value

Time domain characteristic	Frequency domain characteristic
${f \Gamma}_0$: Timebase or FFT window (in seconds)	Frequency resolution (in Hz) FFT bin size (in Hz) Lowest (non-DC) frequency point (in Hz
F _s : Sample rate, S/sec	Highest frequency value: $f_{max} = \frac{1}{2}$ Sample rate (Nyquist frequency of sample rate)
Bandwidth of the scope's amplifier	Frequency where response is – 3 dB down from pass band value

What to do with the extra data points?

- An FFT uses 2ⁿ points this means we need to take the number of points in the scope acquisition and truncate/expand to a power of 2
- Without a compelling reason otherwise, use truncate about the center of the acquisition window (not the trigger point)

 The Vertical Scale

 • FFT default units are dBm: a power with 1 mWatt as the base.

 • Power is what the voltage would generate in a 50 Ohm resistor

 $Power[Watts] = \frac{V_{rms}^2}{50}$ $Power[mWatts] = \frac{V_{rms}^2[V]}{50} \times 1000$
 $Power[dBm] = 10 \times log(V_{rms}^2[V] \times 20) = 10 \times log(20) + 10 \times log(V_{rms}^2[V])$
 $Power[dBm] = 13dBm + 20 \times log(V_{rms}[V])$

 • It is the power in each frequency bin

 • How do we interpret the voltage amplitude?

 $Power[dBm] = 13dBm + 20 \times log(V_{rms}[V])$
 $V_{rms}[V] = \frac{1}{\sqrt{2}} V_{amplitude}[V]$
 $Power[dBm] = 13dBm + -3 + 20 \times log(V_{amplitude}[V]) = 10dBm + 20 \times log(V_{amplitude}[V])$

Rec	lucina	no	
I VEC	iucing		130

- Reduce noise floor with lower RMS noise source
 - If digitizing noise, use greater bit resolution (12 bit oscilloscope)
 - If digitizing noise, use higher sensitivity scale, and offset
 - Use lower noise amplifier
- Recommended general process:
 - Use highest sample rate at highest frequency range
 - Adjust acquisition time to increase number of samples and reduce noise floor
 - For fixed spectral noise density, more bins → smaller dBm noise level

Example: a Sine Wave Generator What do we expect to see? Sample rate compared to repeat frequency Total number of samples Acquisition window Frequency range Signal within voltage window-not saturating TELEDYNE LECROY

Step 4: Look for the source of interference

- "There are two kinds of designers: those who are designing antennas on purpose and those who are not doing it on purpose"
- Examples of pick up antennas
 - Near field probe

Looking for radiated noise from the microcontroller

Example 2 Oscillator board with a noisy power rail

Some more short examples

9 V wall wart, < 1 MHz range

- Lots of 100 kHz harmonics
- Peak amplitude ~ 20 dBmV = 10 mV amplitude, out of 9 V, 0.1%
- After 1 A load, all the excess noise is at low freq- 60 Hz multiples
 - Peak of 30 dBmV, 30 mV out of 9 V.
- So what: weakness in this design is poor DC rectification of 60 Hz- need more capacitor filtering on DC input side

USB source

0.5 A load

TELEDYNE LECROY

- All the noise < 200 MHz
- Near 24 MHz
 - ~ -3 dBmV which is 0.7 mV amplitude
- Looks like 6 MHz 1st harmonic with 4th, 5th and 6th harmonics showing up

