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A Traceable Workflow
For Software-Defined Radio Development

Travis F. Collins and Andrei Cozma

Abstract—In this paper we discuss a workflow for software-
defined radio development, which uses modern software and
hardware tools to accelerate the design process. Specifically, this
work addresses the historical disconnects in the flow from initial
algorithm design and conception, through to final HDL and
hardware deployment. This flow is demonstrated through an
example modem design and custom hardware for deployment,
utilizing the Analog Devices AD9361-Z7035 System-on-Module.
The main advantages of this proposed workflow is that it provides
traceability in a design and naturally segments tasks to an
engineer’s domain of expertise, but also provides convenient areas
of convergence between disjoint group members.

Index Terms—SDR, FPGA, AD9361, SoM.

I. INTRODUCTION

HE development cost and time of a modern commu-

nication or radar system is substantial, and the teams
designing such systems are becoming smaller and less hard-
ware averse [1]. A typical wireless system itself can be
broken into sections including: analog front-end conditioning
at RF, conversion stages to baseband, digital conversion, and
baseband processing. A large majority of the analog front-
end and conversion sections have been addressed with modern
transceivers, such as the popular Analog Devices AD9361 [2],
but downstream baseband processing is still left of to the
radio developers. For a general purpose transceiver it can be
difficult to integrate any of these components since they are
waveform and application specific. However, implementing
such functionality in custom application specific integrated
circuits (ASIC) can be a costly endeavor. Even implementing
a system with a programmable interface, such as a field
programmable gate array (FPGA), can still be complex. Due
to the interface understanding to talk to a complex converter
or transceiver, as well as the signal processing expertise to
implement a wireless system.

To reduce development risk current industry trends for RF
systems is to move from ASICs to programmable Systems
on Module (SoM) or Systems on Chip (SoC), integrating
RF transceivers with programmable logic and CPU cores. An
example of such a system is the Analog Devices ADRV9361-
777035, which bundles the AD9361 and a Xilinx FPGA. This
device provides an off-the-shelf solution to directly interface
with a transceiver, but which is also field deployable unlike
many FMC based evaluation kits. HDL reference designs are
also provided with these boards so users can start from a
functional design and focus on their application specific pieces.

With this focus on FPGA devices the downstream sig-
nal processing blocks that traditionally were implemented in
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ASICs are now provided as intellectual property (IP) units,
comprising both HDL and software. These components are
deployed in the programmable logic and the processing units
of the new RF systems yielding much more flexibility in terms
of functionality, application specificity and update/upgrade
capabilities. Therefore, the same device can be used in an
array of applications, as well as easily upgraded over its life
span.

Developing these IPs requires deep knowledge of commu-
nications and signal processing algorithms, as well as the
caveats when such algorithms are deployed into hardware and
face impairments that are commonly overlooked in theoretical
analysis. This disconnect coupled with traditionally hardware
centric designs is departing to new software focused imple-
mentations where software-defined radio (SDR) systems have
become the dominant approach for any wireless prototyping
and development. SDRs tightly couple hardware and soft-
ware, making a device highly programmable but also highly
complex. Therefore, implementors must have the necessary
skills to manage software control, algorithm design, and FPGA
constraints. A rare combination of experience for any engineer.

This paper focuses on a design flow for SDRs that ex-
ploits current tooling paradigms and provides an avenue for
traditionally separate development teams to work in this new
converged methodology. Instead of requiring a single devel-
oper competent in all areas, this design flow breaks down an
implementation into segments that complement engineer’s skill
and allow a team to work more effectively. This is approached
through an example design of a software defined modem
targeting the Analog Devices ADRV9361-27035 SoM, based
on the AD9361 agile RF transceiver and the Xilinx Zynq SoC.
The paper discusses the tools, the design and deployment
processes and brings to light the challenges encountered to
successfully run the system in the real world. In this work we
explicitly define design stages to complement tool flow and
design goals, from initial simulation, through prototyping and
finally into production.

A. Contributions

The main contributions of this paper is the introduction of
a workflow which:

e Provides early access to hardware and real-world signals
to algorithms engineers.

o Enables consistent algorithm validation on prototyping
and production hardware.

o Reduces design time and missed requirements by test
driven implementations.

o Allows engineers to focus on areas in their domain
knowledge.



EDICON 2018

II. BACKGROUND

A modem design is a complex process requiring develop-
ment of a set of algorithms to recover a waveform with a
specific structure. This typically follows a path of mathemat-
ical derivation and then simulation for initial validation. Such
simulations are performed with tools like MATLAB, Python,
or even C/C++ for mathematical computation. For ease of
implementation, this work is done with floating point data
types and complex mathematical libraries, which accelerate
this validation process. However, these designs cannot be
directly mapped into hardware friendly versions, and generally
require substantial rewrites and possibly new algorithms. In
Figure [I] we outline this design process in detail for many
design teams. After the initial MATLAB reference design, the
algorithms will be converted to a more multi-threaded friendly
language like Python for real-time signal processing with
hardware. A popular SDR framework like GNURadio [3] uses
this approach to perform signal processing in a dataflow type
implementation for performance [4]. Once validated against

MATLAB Floating-
Point Reference Design

Python Multi-Threaded
Design For Streaming

C/C++ Fixed-
Point Design

Verilog/VHDL
Fixed-Point Design

Fig. 1. Design flow for tradition modem design with disjoint stages from
initial algorithm conception to final hardware ready HDL design.

with hardware, the algorithms can begin the process of conver-
sion to FPGA friendly fixed-point design. Typically, a design
is moved to C/C++ and purely implemented with integers
or custom fixed point primitives that closely match FPGA
mathematical operations. Proving out fixed-point algorithm
performance in C/C++ is much simpler than doing so in
Verilog directly.

Many tools have been developed to help aide in this design
process, but heavily focus on the algorithmic conversion
stages. These include SystemC, Xilinx System Generator (Sys-
Gen), Xilinx High-Level Synthesis (HLS), Intel DSP Builder,
Intel HSL Compiler, and MathWorks HDL Coder. SystemC
and both HLS tools allow automatic conversion of C/C++
code into register transfer level (RTL) for a targeted FPGA.
SysGen, DSP Builder, and HDL Coder all rely on Simulink for
system construction and numerical simulation. For a system
designer, HLS compilers rely on IP integration primarily for
system level integration. However, with the Simulink based
tools much of this integration can be implemented and tested
in Simulink itself, which can be favorable to those less familiar
with synthesis tools.

The tools discussed so far, typically produce monolith
designs with minimal interfaces to the outside world. However,
alternative design patterns use FPGAs as acceleration engines
rather than a standalone design for the field. RFNoC [3] fits
into this category, which is an extension to GNURadio where
processing blocks are placed on the FPGA but can be arranged
in any order and in conjunction with CPU processing blocks.
However, RFNoC will always require some host control for
management and configuration from GNURadio which is
undesirable for many production systems.

When considering the workflow for RFNoC, processing
block implementation is a disconnected flow which requires
switching between many different tools. Making traceability
cumbersome for a developer, like the flow presented in Fig-

ure [1

III. DESIGN WORKFLOW

In this paper we will present a flow which complements
the available tools, but also simplifies the design process by
maintaining traceability from simulation to HDL deployment.
The design flow will be demonstrated through an example
modem design, which was implemented by two engineers.
One full time algorithms engineer and one part-time systems
engineer. We will also provide possible deviations from this
workflow to utilize other tools, but still maintain the desired
traceability throughout the design process.

Separation of Tasks between developers

Figure [2] provides a breakdown of the four stages of the
design: algorithm development, design elaboration, prototyp-
ing, and finally production. All four stages remain in the
MathWorks suite of tools (MATLAB and Simulink), which
provides us the traceability through each step in the design
assuming some implementation strategies by a user. The first
stage in the design process is algorithm development is self
evident, and is a common starting point for many designers as
discussed in Section In the case of this workflow, a designer
will create the necessary tests which verify the performance of
their simulations. This will be a foundational baseline which
will be used to compare futures variations against, sometimes
referred to as a golden reference. To simplify this process
MATLAB has a built-in test framework called MATLAB
Unittest [6]], which makes writing repeatable straightforward.
Since Simulink can be considered an extension of MATLAB,
programmatic control of Simulink models can also be per-
formed within the MATLAB Unittest.

Tests derived in this stage should map to system level re-
quirements as much as possible, which is a efficient test driven
coding flow. To complement simulations, real-world data can
be streamed into these simulation through Industrial IO (IIO)
infrastructure [7]], available on all transceivers and many data
converters. Utilizing streamed data from hardware provides
a more robust level of validation on hardware an algorithm
is designed to eventually run upon. Due to MATLAB and
Simulink’s tight integration with 11O, passing data to and from
devices and be implemented with the test cases themselves.

Once the algorithms and general signal processing com-
ponents have been verified, we can move on to the task of
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Fig. 2. Proposed design flow for traceable designs, from initial algorithm
conception to deployable HDL.

getting them to hardware. In this case we will utilize HDL
Coder [8] to create Verilog and RTL for our eventual deployed
design. Therefore, we must convert our design into a Simulink
model. This stage of the workflow is design elaboration,
where were are explicitly modeling all the necessary control
signals and data paths within our system. MATLAB is a
great tool for algorithm implementation; however, Simulink is
better at describing system level features and more importantly
generating HDL code.

A. Design Elaboration

The eventual goal is to create a model that will generate
HDL code, but this requires our algorithms to be based in
Fixed-Point data types. A second requirement of HDL Coder
specifically, is support for sample or scalar based mathematics.
Therefore, any algorithms that rely on vector calculation,
which is very common in MATLAB programming, must be
converted as well. To ease this process the design process is
split into three distinct variation. This simplifies the design
process, and makes updates or feature improvements testable
and sustainable in the future. The three distinct variations are
outlined in Figure [3]

Figure [3] breaks down the three design variations starting
from the left with our baseline MATLAB float-point reference
model. This is the model that was already constructed in the
algorithm development stage. The second design variation,
which is the first Simulink model, is called the implemented al-
gorithm model. This model still uses floating-point data types,
but uses purely sample based algorithms. This model should
have the same algorithmic performance as the MATLAB
golden reference since we are not reducing the precision of any
calculation. Since Simulink is an extension of MATLAB, we
can utilize features like the MATLAB Function Block, shared
workspaces, and mirrored block support in both tools to easy
the development of this model. This first model accomplishes
the first two steps in our requires for HDL code generation, it
gets the design into Simulink and makes the design sample
based. For consistency to our requirements, the Simulink
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Algorithm Model
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Fig. 3. Staged design variation to get from MATLAB to a HDL capable
Simulink model.

model should also be integrated into the unit testing harness
developed in the algorithm development stage.

Once the implemented algorithm model is complete, a
second model is then created from this floating-point model,
which instead uses fixed-point data types and blocks which
support HDL code generation. Simulink provide several tools
to aide in this process include: Fixed-Point Designer, the
Fixed-Point Tool, fixed-point specific blocks of common signal
processing units, and automated brute-force conversion meth-
ods. However, since there will be a precision reduction in the
mathematical operation it is important to again validate this
design continuously against the generated testing suite. At the
completion of this process the design is capable of generating
HDL code.

Alternatively, it is possible to utilize Xilinx SysGen [9] or
Intel DSP Builder [10] to implement these fixed-point designs.
These tools do offer higher performance in some cases of the
generated code for their respective FPGA vendors. However,
standard Simulink blocks cannot be directly interleaved in each
case. SysGen is more flexible than DSP Builder, but a design
must be segmented into a SysGen portion and non-SysGen
portion for valid generation of HDL. DSP Builder only allows
blocks sourced from its own library, no external Simulink or
third party blocks.

B. Prototyping

In the third phase, prototyping, the design is deployed to a
validated evaluation platform. These will typically be a SoM
or even FPGA evaluation kit with attached FMC cards. The
purpose of this stage is to validate the design is operating
correctly on a deployed system. To simplify this process,
Analog Devices provide baseline reference designs, generated
IP can be deployed into. This provides a starting point for
algorithm designers to focus on their IP rather than worry
about interfacing with a transceiver or converter. MathWork’s
hardware support packages (HSP) automate the insertion of
IP into reference designs, so algorithm engineers can almost
ignore HDL compiler tools.
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MathWorks tools particularly shine here since they provides
various mechanisms to investigate a deploy design. These
include the following features:

o FPGA-in-the-loop (FIL) uses MATLAB or Simulink to
generate stimuli for a deployed IP, which is standalone.
This is useful for inspecting a specific function of a
specific block on hardware. However, external ADCs or
DAC:s are not used during these simulations.

« External Mode is a Simulink only feature which provides
direct register access and low speed data streaming off the
FPGA. This tool is useful for tuning parameters in real-
time as the design is running with real data coming from
an external converter or transceiver.

o FPGA-Capture is a tool that provides functionality similar
to ChipScope or SignalTap for signal capture. However,
blocks can be directly dropped anywhere into a model
at compile time for inspection at runtime. This is useful
for traditional FPGA timing diagram debug, but directly
provides data back into MATLAB or Simulink. Alterna-
tively, FPGA-Capture can be used to aide in packet error
rate (PER) testing, where trigger at connected to CRC or
equivalent error signals. Allowing for debugging of rare
events of error during this intensive testing. This allows
PER testing to be done on the hardware, which can take
many order of magnitude less time than in simulation.

o 11O itself can be utilize to collect data since libIIO [11]]
provide remote procedure call (RPC) functionality over
USB and Ethernet interfaces.

Again, this testing should be integrated or related to the
testing framework utilized in the previous stages of the design.
Maintaining the same level of verification to the desired
requirements of a design.

C. Deployment

In the final stage, deployment, the design is moved from
prototyping hardware to field ready hardware. In the case
of FMC cards, many implementors would move to a fully
custom board. However, a SoM can be simply migrated from
a debug or evaluation carrier board, to an application specific
carrier. In the case of the SoM, the developed design can be
directly migrated to the deployment platform. This is true since
the FPGA, transceiver, and connectivity between them does
not change. Figure [ is an example of a SoM development
cycle from prototyping to field deployment. The device on the
bottom of Figure []is a PackRF reference platform, which can
be field deployed.

At this point the design can be handed off to an FPGA
integration engineer who has a fully validated signal chain
meeting requirements set out in the initial phase of the design.
Since the design process has this consistent validation there is
complete traceability, even from Simulink blocks to generated
code. Therefore, if a bug exists in the code it can be validated
and tested at any stage in the design.

This process also doesn’t require valuable FPGA engineer’s
time to debug a signal chain. Additionally, the FPGA engineer
can spend more resources on optimizing the infrastructure of
the system level design to provide optimized interfaces with

Fig. 4. Example of ADRV9371-Z7035 SoM on prototyping carrier (Top) and
deployed in custom enclosure and carrier (Bottom). Example of simplified
hardware deployment path from prototyping to a field ready system.

the algorithmic IP and more flexible debugging signal paths
to ease the integration and verification of the algorithmic IP
in the production design.

IV. EXPERIMENTAL SETUP

Using the flow described previously we implemented an ex-
ample design of a full stack software defined modem targeting
the Analog Devices PackRF platform. Relying on the Analog
Devices Linux distribution as an operating system, on
open source software and on standard interfaces allowed the
design to easily and rapidly integrate with other applications.
The outcome of the project was a practical implementation
of a wireless point to point link between two radios, with
applications in UAV video transmission, high speed wireless
data links, internet of things and cognitive radio.

Since the software defined modem design covers all the
layers in the OSI network stack, the set of design and
implementation tasks was divided with focus on these layers.
The physical (PHY) and data link (MAC) layers of the modem
were implemented using the design flow described in the
previous sections and are based on a QPSK frequency-division
duplexing (FDD) communication scheme with two nodes, each
node being able to receive and send data at the same time.
The network layer was implemented in software based on the
TUN/TAP virtual network driver while the upper layers
of the stack were left to the default implementation in the
Linux operating system. For the physical and data link layers
a pure HDL implementation was chosen. All the HDL code
was generated from the Simulink models using the MathWorks
HDL Coder, resulting into an IP block providing essentially
packet based interfaces to the upper layers. As seen in Figure
[l for the final integration into the system HDL design, the
PHY and MAC IP needs to connect to a number of other
blocks in the design such as the AD9361 transceiver IP and
the Rx and Tx DMAs that are being used to transfer the data
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Fig. 5. System block diagram of software and HDL components, as well as
their interfaces to the AD9361 controller IP. Showing connections between
the Xilinx Zynq SoC ARM and FPGA logic.

to and from the system memory. An additional DMA is used
for debug signals allowing large volumes of real time debug
data from the IP to be captured and processed in order to track
any functionality issues.

Usually, the task of integrating the IP generated from the
Simulink model with the rest of the HDL design is a manual
process where the algorithm engineer hands it to an FPGA
engineer to add into the design. By making use of the PackRF
Board Support Package (BSP) for the MathWorks Workflow
Advisor [14], the integration process is fully automated by the
MathWorks tools enabling the algorithm engineer to generate
the entire HDL design to be deployed onto the hardware
platform. Figure [§ depicts the traditional integration process
where theres a lot of back and forth between teams leading to
interface definition mismatch probability and prone to errors
between steps.

Generate
Integrate Genera!e Test new
LU | IP from HDL IPingHDL Linux SEELU design on
SRS | Simulink Engineer it i engineer el Al
model g g

Fig. 6. Traditional design flow

Figure [7] shows the automated process where the same
person does all the steps staying in the same flow as for
the previous designs. This leads to less errors and a reduced
integration time.

The result of the process described before is an IP that
handles the physical and data link layers, but, to get to a fully
functional system, the rest of the stack needs to be imple-
mented as well. In this particular case the other layers of the
stack have all been implemented in software taking advantage
of the infrastructure provided by an embedded Linux operating
system running on the processing system of the Xilinx Zynq

Integrate Generate
IS IP in HDL Linux Test new
o proms Ol e () mee (£ dedanon
i smg WA slng WA hardware

Fig. 7. Integrated design flow

SoC. Depending on the application, there can be different
higher level protocols running on top of the data link layer. For
this case the decision was to go with TCP/IP and expose the
modem as an Ethernet interface to the rest of the system. To do
this a TUN/TAP interface was used, which is a standard way
to expose a custom communication device in Linux, providing
all the other applications access to the communications device
through an industry standard Ethernet interface. The choices
to use Linux as an operating system and to expose the modem
through a standard Ethernet interface moved the design into
an industry standard space since embedded Linux is seeing an
increasingly wider adoption in industry and any application is
able to interface with an Ethernet interface for data transfer.

Fig. 8. Experimental setup

For system verification two Analog Devices PackRFs were
used to stream H.264 encoded video via a wireless link from
a USB camera attached to one of the devices and display the
received video on the screen of the other device. The modem
IP was proven capable to sustain a direct peer to peer link
at a data rate of 5 MSPS with forward error correction and
channel equalization.

V. CONCLUSIONS

The design flow presented in Section[[V]is not perfect but it
has three main advantages. First, by staying in the same tools
set this directly connects the development stages and makes
fixing bugs, which is inevitable in any design, a systematic and
traceable process. By maintaining the same testing framework
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across these design stages it allows consistency across the im-
plementations and reduces oversights in the design. However,
this assumes the built tests have the necessary coverage over
all the required features of a design.

Second, this design flow with use of BSPs clearly segments
work for different team members with differing skills sets,
and more importantly allows them to work together more
seamlessly. This is primarily of the result of the BSP forcing
strict API boundaries on a design, and allows both FPGA and
algorithms developers to work in the same tools with the same
assumptions and perspectives on a system.

Finally, by taking advantage of SoMs and vendor authored
references designs, developers can start from a functional
design and focus on their specific implementation. Rather
than wasting valuable time validating connectivity to hardware
components and data correctness.

Overall this workflow:

o Provides early access to hardware and real-world signals
to algorithms engineers.

o Enables consistent algorithm validation on prototyping
and production hardware.

o Reduces design time and missed requirements by test
driven implementations.

o Allows engineers can focus on areas in their domain
knowledge.
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