

IQ Impairments and Corrections in Ultra-wideband transmitters

Dr. S. Wanner

Outline

- 1. Motivations
- 2. Mathematical formulation
- 3. Image suppression impact on Comm. Systems.
- 4. Corrective Topologies
- 5. Adaptive blind estimations methods
- 6. Experimental data
- 7. Summary
- 8. Future work

Motivations

- 1. Multi-channel Transmitters
- 2. Ultra-Wideband Transmitters
 - a. Beam hopping and time slicing satellite communications
 - b. 5G waveforms

MATHEMATICAL FORMULATION AND PICTORIAL DEPICTIONS **IQ** IMPAIRMENTS

(3)

Modulated Baseband signal

$$y_m(t) = y_i(t) + jy_q(t)$$

Translated to RF

$$y_{trans}(t) = real\{y_m(t)e^{-jw_{lo}t}\}$$

I-component

 $y_i(t) = x_i(t)\cos(w_c t)$

Substitution and manipulation

I-Component

depicting an even-mode

$$Y_{i}(w) = F\{y_{i}(t)\} = F\{x_{i}(t)\} * F\{\cos(w_{c}t)\}$$

= $X_{i}(w) \left\{\frac{e^{jw_{c}t} + e^{-jw_{c}t}}{2}\right\} Y_{i}(w)$
= $\frac{X_{i}(w)}{2} * [\delta(w - w_{c}) + \delta(w + w_{c})]$ (4)

MATHEMATICAL FORMULATION AND PICTORIAL DEPICTIONS IQ

Q-component

$$y_q(t) = -x_q(t)\sin(w_c t)$$
 (5)

Substitution and manipulation

$$Y_{q}(w) = F\{x_{q}(t)\} * F\{-\sin w_{c}t\}$$

= $X_{q}(w) * F\{\frac{e^{-jw_{c}t}-e^{jw_{c}t}}{2j}\}$ (6)
= $\frac{X_{q}(w)}{2j} * [\delta(w-w_{c}) - \delta(w+w_{c})$

Frequency Domain representation of Qcomponent depicting an odd-mode

MATHEMATICAL FORMULATION AND PICTORIAL DEPICTIONS IQ IMPAIRMENTS CONT.

Rewriting the translation equation

$$y_{trans}(t) = \frac{y_m(t)}{2} e^{-jw_{lo}t} + \frac{y_m^*(t)}{2} e^{jw_{lo}t} \quad (7)$$
Assuming, $Y_m(w) = Y_m^*(w)$

$$= \frac{Y_m(w)}{2} * [\delta(w + w_{lo}) + \delta(w - w_{lo})] \quad (8)$$
Baseband
$$Ideal Direct-Conversion$$

$$Ideal Direct-Conversion$$

$$Ideal Direct-Conversion$$

$$Ideal Direct-Conversion$$

$$Ideal Direct-Conversion$$

$$Ideal Direct-Conversion$$

Adding I and Q to translation

Ideal direction conversion with baseband offset

$$Y_{m}(w) = \frac{Y_{i}(w)}{2} * \left[\delta(w - w_{c}) + \delta(w + w_{c})\right] + \frac{Y_{q}(w)}{2} * \left[\delta(w - w_{c}) - \delta(w + w_{c})\right]$$
(9)

$$* [\delta(w + w_{lo}) + \delta(w - w_{lo})].$$

Wanted Signal

$$\frac{X_i(w) + X_q(w)}{4} * \delta(w - w_c) \quad (11) \quad \text{Vector relationship of I/Q Components}$$

Image Signal

$$\frac{X_i(w) - X_q(w)}{4} * \delta(w + w_c)$$
 (12)

IMPACT ON IMAGE-SUPPRESSION ON COMMUNICATION SYSTEMS

Degradation of signal

$$CNIR = 10\log_{10}\left(\left(\frac{1}{\frac{SNR_{input}}{10}} + \frac{1}{\frac{CNIR_{image}}{10}}\right)^{-1}\right)$$
(13)

Rule of thumb: Keep CIR 15 dB below target SNR value

Frequency Impact on IQ imbalances

Total Amplitude Imbalance

$$G_{imb}(w) = L_{imb}(w) * A_{imb}$$

Total Phase Imbalance

$$\phi_{imb}(w) = \angle L_{imb}(w) + \theta_{imb} + \theta_{delay} \qquad (17)$$

Typical direct conversion transmitter implementation (16) with amplitude and phase imbalance.

Corrective Topology Time Domain

Imbalance Compensation

$$y_{i-corr}(t) = \alpha \{y_i(t) + \beta y_q(t)\} \quad (18)$$

Mostly Amplitude Compensation

$$\alpha = (1 + A_{imb})\cos(\theta_{imb})$$

Phase Compensation

 $\beta = sin(\theta_{imb})$

Wideband corrective topology for phase and amplitude (20) imbalances for direct conversion transmitter

Corrective Topology Time Domain

Constant slope FIR filter for frequency dependent imbalance correction.

Phase imbalance over baseband frequency as a result of time delay imbalance

Adaptive Blind Estimation IQ IMPAIRMENTS

Adaptive Blind Estimation IQ IMPAIRMENTS

Orthogonality

$$Error = \int_{-l}^{l} I(t)Q(t)dt,$$

Orthogonal error accumulation

$$\phi_{imb-new} = \phi_{imb-old} + \lambda_{phase} I(t) Q_{corr1}(t) \quad (2)$$

Amplitude error accumulation

$$G_{imb-new} = G_{imb-old} + \lambda_{gain} [I(t)^2 - Q_{corr2}(t)^2] \qquad (2$$

Plot of sin and cos function to illustrate even and odd properties.

(23)

Adaptive Blind Estimation IQ IMPAIRMENTS

$$Q_{corr2}(t) = G_{imb-new}Q_{corr1}(t).$$

Vector relationship of I/Q Components

image

Experimental Results

Amplitude and phase correction of baseband IQ imbalances

Image error vs gain/phase imbalance error

Experimental Results

using gradient decent algorithm

Experimental Results

Agilent Spectrum Analyzer - Swept SA												
<mark>.x</mark> Mar	ker 1	RF ▲ -24	50 Ω 0.000	AC 000000	MHz	SE	e Run	Avg Type	ALIGN AUTO : Log-Pwr	09:43:50 A TRAI	M May 01, 2018 CE 1 2 3 4 5 6 PE W Atanatata	Peak Search
۲۰ dB/div Ref -20.00 dBm -37.79 dB											Next Peak	
-30.0							X2					Next Pk Right
-40.0 -50.0												Next Pk Left
-60.0 -70.0		14	.2									Marker Delta
-80.0												Mkr→CF
-100	tradated		him day		l to the start of the	fotetteette (he	ligh an lithe	and the sector of the	alitera di set	al al timer	nen hinte-	Mkr→RefLvl
-110 Cen #Re	ter 1.2	2000 G	Hz		VBJ	A/ 10 kHz			Sween	Span 6	00.0 MHz	More 1 of 2
Msg UFile <screen_0006.png> saved status</screen_0006.png>												

Summary

- 1. Mathematically derived root cause of image
- 2. Explored implications on image suppression in communications
- 3. Identified frequency compensation methods for phase/gain imbalance
- 4. Blind estimation and compensation methods for dynamic systems presented
- 5. Experimental results for frequency and dynamic compensation methods presented

Future Work

- 1. Further exploration of different imbalance estimation methods
- 2. Compensation methods in frequency domain

Additional slides Linearity of estimation methods

Additional slides Linearity of estimation methods Cont.

Additional Slides Corrective Topology Frequency Domain

Wideband corrective topology for phase and amplitude imbalances for direct conversion transmitter

Fourier Transform of corrective domain structure

$$Y_{i-corr}(w) = y_{i-corr}(t) = \alpha F\{y_i(t)\} + \alpha \beta F\{y_q(t)\}$$
(26)

Additional Slides

Corrective Topology Frequency Domain Cont.

Frequency selective corrective topology for phase and amplitude imbalances for direct conversion transmitter

References

[1] J.J Witt, 'Modelling, Estimation, and Compensation of Imbalances in Quadrature Transceivers', Stellenbosch University, 2011.

[2] L. Hars, "Frequency Response Compensation with DSP", in Streamlining Digital Signal Processing 2nd Edition. Hoboken, NJ: Wiley, 2011, ch. 39.

[3] V. Valimaki and T. I. Laakso, "Principles of fractional delay filters," 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), Istanbul, Turkey, 2000, pp. 3870-3873 vol.6.

[4] 'IQ Correction', MEP Newsletter 3, 2011. [Online]

Available:http://www.delmarnorth.com/microwave/requirements/IQGainPhaseCo rrection.pdf, [Accessed: Aug. 6, 2018]

