

Why RF and High-Speed Circuits Belong Together Under One Roof

How Our Capabilities Help Achieve the Art of the Possible

Presented by Daniel Everitt

Lark RF Technology Overview

Our History

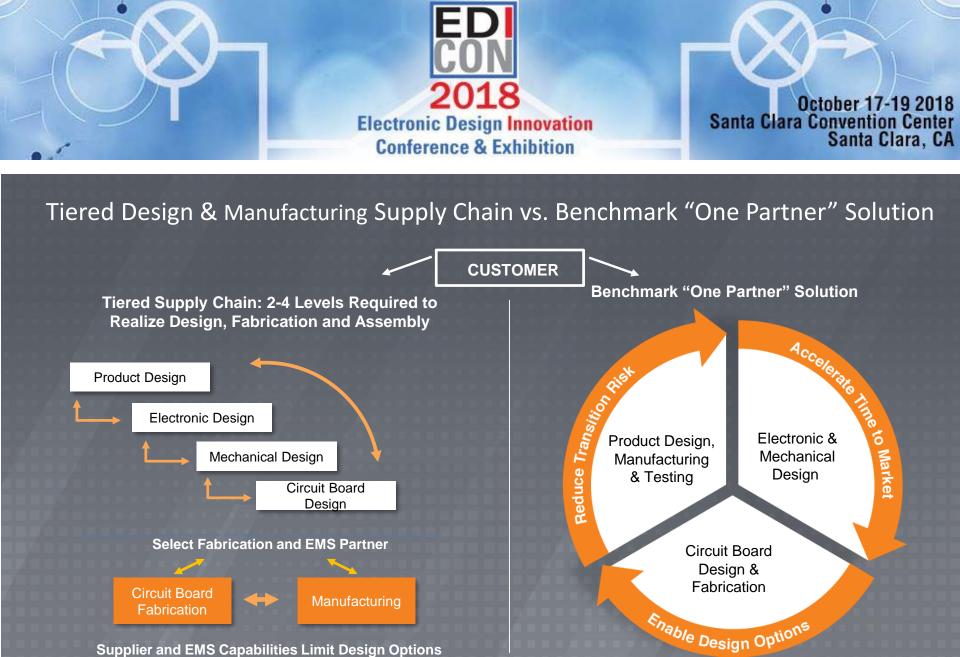
• Lark RF Technology is a Benchmark Company, and has provided RF component design and manufacturing for over 25 years.

Our Mission and Priorities

- We are investing in innovation. We established an **RF and High Speed Design Center of Innovation** in Phoenix for integrated solutions (radios, circuit design, mixed microelectronics, etc.).
- We are the leaders in Liquid Crystal Polymer (LCP) components and high speed circuit miniaturization.
- We are expanding from high-end filters to offering broad RF Components and integrated RF solutions.

Our Markets

- Aerospace and Defense Sensor Systems (Radar, Electronic Warfare, Munitions, and Avionics)
- Telecommunications (RF Front End)
- High-speed Computing
- Medical and Industrial



Lark RF Technology: RF High Speed Design Center of Innovation

Our Areas of Expertise:

- High Speed Circuit and Substrate Design and Fabrication
- Integrated Microwave Design and Assembly
- Hybrid and Mixed Technologies
- Surface Mount Technology (SMT) and Microelectronics Integration
- Design and Testing at Millimeter Wave Frequencies

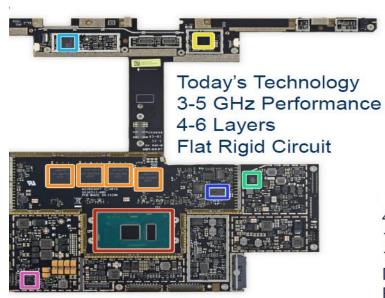
Supplier and EMS Capabilities Limit Design Options

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

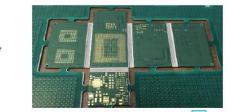
RF and High Speed Design Center of Innovation

Our design center is the first facility in the world where customers can have access to:

- Prototyping and design services
- Breakthrough manufacturing processes in substrate and packaging technologies
- Mixed microelectronics
- Complex product assembly and testing


The Benefits of High Density Interconnect (HDI) Utilizing Liquid Crystal Polymer (LCP)

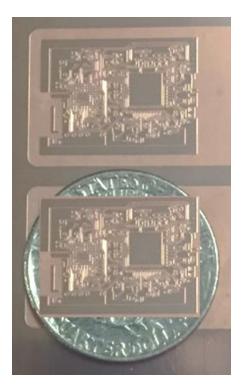
- Enables high frequency circuits beyond 40 GHz
- Smaller lines and spaces with tuned performance
- Up to 10 times thinner than conventional circuits
- 5-10 times more accurate and precise with better registration



Miniaturization of a PCB Utilizing LCP

40 GHz Performance 12 layers 5X smaller - Foldable

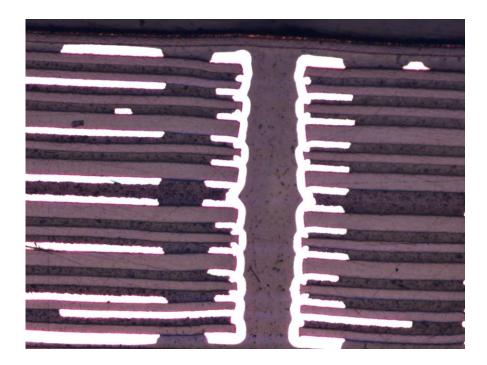
40 GHz Performance 12-20 layers 10X smaller – Foldable Direct Die Attach Embedded Components 3D Shape Form



Miniaturizing an IoT Tracking Micro-tag

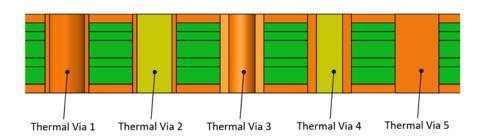
Objective: Reduce RTLS tracking module to the size of a US quarter

- Design includes UWB and BLE capability
- Liquid Crystal Polymer (LCP) for improved RF performance and lower power
- Proprietary embedded antenna design for reduced size



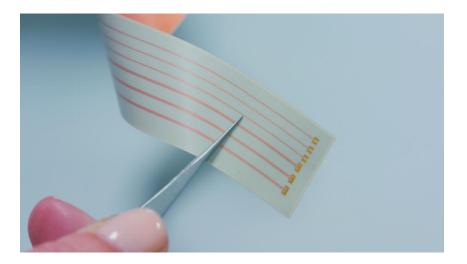
High Density Interconnect (HDI) Utilizing LCP

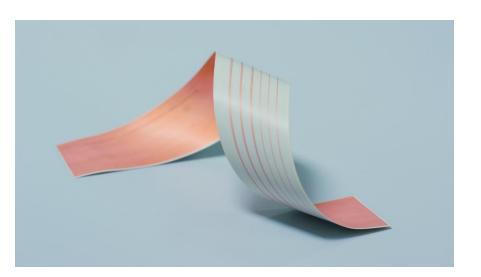
X-ray of 15 Layer LCP PCB with thru-hole via


- Cross section of x-ray microscope view of a 15 layer LCP PCB with thruhole via
- Benchmark's patented LCP fabrication processes prevent delamination issues, allowing higher layer count boards

Thermal Performance Using Different Vias

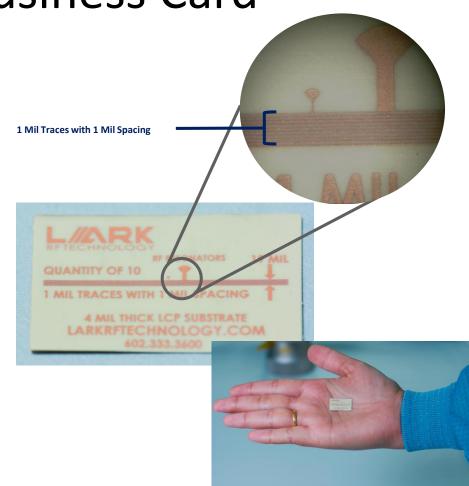
- Via 1 Standard via with standard plating thickness, low thermal performance
- Via 2 Standard plating with thermal epoxy filling, improved performance
- Via 3 Thicker plating on via increases thermal dissipation path, better performance
- Via 4 Thicker plating with thermal epoxy filling, even more improved performance
- Via 5 Copper filled via maximizes the thermal dissipation path, best thermal performance


Buried Vias Build Solid Walls in LCP



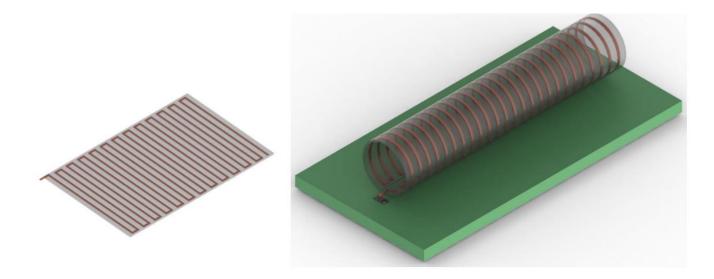
LCP is Ideal for Flexible Printed Circuit Boards

• Microstrip test coupon on flexible LCP substrate with 1 mil and 3 mil striplines



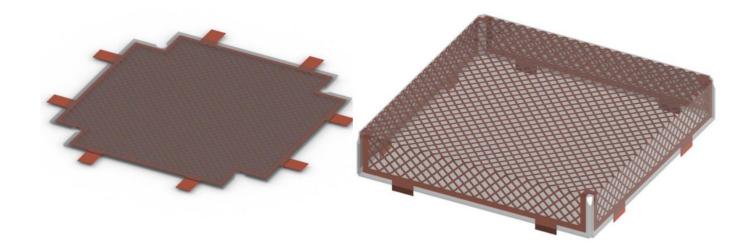
LCP Micro "Business Card"

- The LCP card is made using a 2 mil thick LCP sheet
- LCP comes with copper on both sides, which is then etched to get just the thin sheet of LCP
- The card has ten 1 mil (25.4 microns) thick lines with 1 mil of spacing between them
- There are two RF resonators on the card for demonstration purposes
- The road map for the technology is to be able to make lines and spaces less than 0.7 mils (10-12 microns)



Foldable LCP Example

Formed Circuit Bearing Fusion Bonded Liquid Crystal Polymer (LCP)


• Formable nature of LCP allows the creation of embedded circuitry, allows it to form a shape, and allows a fusion bond to retain shape or to bond to mating components.

Foldable LCP Example

Formed Circuit Bearing Fusion Bonded Liquid Crystal Polymer (LCP)

LCP Enables SWaP Reductions

LCP - Enabling Next-Generation Size, Weight and Power Reduction (SWaP)

- Conveniently bury bare dies, components, and circuit lines inside layers of LCP substrate
- Create a substantial decrease in the overall packaging footprint, while creating significant electronic density
- LCP's near-hermetic sealing eliminates the need to add additional coatings or bulky sealed structures
- Lower overall costs, and reduced system complexity

Contact Us

Daniel Everitt Vice President, General Manager RF and High Speed Design Center Lark RF Technology / A Benchmark Company cell: (619) 757-9335 Daniel.everitt@bench.com