

Demystifying Edge Launch Connectors

Raul Stavoli, Davi Correia, Emad Soubh, Carlisle Interconnect Technologies

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Example 1: Typical RF edge launch connector

Example 2: Typical RF edge launch connector

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Field Leakage

Internal PCB Ground not aligned to connector ground

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Ground Discontinuities (1)

Ground Discontinuities (2)

- Assembly utilized to characterize RF edge launch interconnect
- All geometric dimensions and locations are nominal

Ground Discontinuities (3)

Co-Planar ground pulled back 0.127mm/5 mils from the edge

of the board

Ground Discontinuities (4)

First internal ground plane pulled back 0.127mm/5 mils from

the edge of the board

Ground Discontinuities (5)

Top two ground plane layers pulled back 0.127mm/5 mils from

the edge of the board

Signal Discontinuities

Trace pulled back 0.127mm/5 mils from the edge of the board

Ground Discontinuities (Example)

- Performance degraded due to ground discontinuities present at the interface w/PCB
- Connectors did not undergo the correct soldering process

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities

Proposed Solutions

- Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
- Edge platting of PCB
- Conclusion and next steps

Proposed Solutions (1)

- Match the size of the PCB dielectric layer and connector signal pin.
 - Proper ground structure alignment to prevent field leakage
- Edge platting:
 - Minimizes the ground discontinuities at the transition from the connector to the board
 - Prevents field leakage when a larger top dielectric layer on the board is not possible

Proposed Solutions (2)

- Placement of:
 - Vias → Line the co-planar structure on the board with vias to channel the fields in the direction of propagation
 - Connector → Flush against the edge of the PCB to prevent field leakage and a degradation of performance at higher frequencies (PCB edge can be milled down)

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Ground Structure Alignment

 A misalignment of the connector ground and the internal PCB ground plane can lead to resonances.

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Edge Platting

Addresses improper ground structure alignment

No Edge Platting

Prevents field leakage

-45 -50

Minimizes ground discontinuities

Frequency / GHz

Edge Platting Experiment (1)

Edge Platting

No Edge Platting

Edge Platting Experiment (2)

Keysight PNA Network Analyzer N5227A 10MHz-67GHz
 & 1.85mm standard calibration kit (85058B)

Edge Platting Experiment (3)

NO Edge Platting Edge Platting

Edge Platting Experiment (4)

- What is a RF edge launch connector?
- Identify the problem
 - Field leakage
 - Ground and signal discontinuities
- Proposed Solutions
 - Matching the size of the printed circuit board (PCB) dielectric layer and connector signal pin
 - Edge platting of PCB
- Conclusion and next steps

Conclusions

- Edge launch RF connectors require an optimized footprint to ensure performance.
- Some key challenges to address are:
 - Field leakage (resonances)
 - Ground and signal discontinuities
- Proposed Solutions
 - Match the size of the PCB dielectric layer and connector signal pin.
 - Proper ground structure alignment, including the vias to prevent field leakage
 - Edge platting:
 - Minimizes the ground discontinuities, Prevents field leakage

Next Steps

- Experiment with different edge platting configurations
- Revisit connector design to add redundant ground connections to reduce the effect of manufacturing tolerances on the board