

Realistic Antenna Array Modeling for 5G Communications

Laila Salman, Fred.German, Safa Salman, Sergio Melais & Arien Sligar

ANSYS Inc.

The Evolution of the Network*

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

So what do we expect from 5G?

- 5G will be everywhere
- 5G and IoT go hand in hand
- 5G must handle more users and even 4K data transfer

New Frequency (28 GHz).... New Band New Problems!

Electronic Design Innovation Conference & Exhibition

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

Three Dimensions of 5G

- Enhanced Mobile Broadband
 - Cellular in office, industrial parks, malls, sports venues.
 - High volumes in localized areas with lower cost
- Massive Internet of Things
 - Economy of scale for IoT and M2M
 - Low power
- Mission Critical Services
 - New market for high reliability, ultralow latency, security, availability
 - Supports autonomous vehicles and remote operation of equipment

*The 5G Economy, IHS.com

5G Active Antenna System: Multi-Scale + Multi-Domain

Building Smart Cities starts with Connected Street Infrastructure

Large Scale IOT Technology Adoption : Intelligent Street Lighting

Array Design Methodology

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

Finite Array DDM

256 element array

Finite Array with Steering Using Domain Decomposition

Wrapping option in SpaceClaim Performance before and After

Array on Platform

HFSS Solver Overview

Array on Platform Results

Advanced Electromagnetic Solution for Electrically Large Geometry: Fully Coupled Hybrid Solution

Hybrid Solution

Combining multiple numerical techniques in a hybrid solution allows for most efficient solution to this electrically large complex problem Fully coupled solutions

Coupling Matrix

Encrypted 3D Components

Large Scale Simulations with SBR: Received signal strength evaluation

Electrically very large, multi-path environment

- Observation of fading effects as receiver travels along path
- Reduced signal strength as receiver travels in direction with increased blockage
- Fixed antenna

Adaptive Beamforming

- 5G utilizes adaptive beamforming
 - Enabling technology multiuser massive MIMO
 - More efficient usage of radiated power

Fixed Beam Array Antenna typical in 4G

- Fixed beam antenna systems
 - Limiting factor of many 3G/4G networks

Adaptive Beamforming for 5G Applications

Adaptive Beamforming: Line of Sight Example

- Demonstration of adaptive beamforming algorithm implemented using a hybrid FEM-SBR solution
 - Phased array (Base station) solved using faDDM
 - Separation between UE and Base Station simulated using SBR solver
 - 100 meter separation at 28GHz (10,000λ)

Adaptive Beamforming: Non-Line of Sight Example

- Demonstration of adaptive beamforming algorithm for dynamic scenario where LoS is temporarily blocked
 - Metal plate used to provide blockage and multi-path propagation potential
 - Secondary beam seen when plates transition across line of sight

October 17-19 2018 Santa Clara Convention Center Santa Clara, CA

Large Scale Simulation for 5G (28GHz) Base Station Performance

- Physics based simulation of large scale environments
 - Shooting Bouncing Ray (SBR) for efficient simulation of electrically large environment.
 - Accurate representation of antenna array through FEM simulation
- Evaluate system performance
 - Antenna Array
 - Site evaluation
 - Beamforming, null steering algorithms
 - Received power at user equipment
 - Base station to base station interference or unintentional jamming

Single User Beamforming: Received Power

Adaptive beam for moving UE

- 64 Element Phased Array Antenna
 28GHz, microstrip path elements
- Line of sight and multi-path propagation contribute to received power
 - Smart antenna system beam steering
 - UE location ranges from 500 meters to 100 meters from base station

UE Received Power for Adaptive Antenna Array

- Power received by UE for path along city street
- Single user adaptive beamforming, no interference
 - Includes multi-path propagation
 - Up to 7 bounces (SBR solution setting)

Base Station Handoff

- Device travels along street in dense urban environment
- UE travels between coverage zones of two base stations
 - Observe received power from both sites
- Site evaluation
- Base Station to Base Station Interference

Base Station Handoff: Received Power and Coverage Zones

5G And Autonomous Vehicles

- According to Qualcomm CEO Steve Mollenkopf
 - Data from cameras and other sensors will be fused with V2X data, providing safer and improved autonomous operation.
 - 3D HD maps are an example. When combined with precise positioning, they'll be essential for safe navigation through changing environments.

Steve Mollenkopf CEO, Qualcomm

Automotive V2V and V2I
Wireless Communications

Engineering Design Challenges facing the IoT V2V Communication Systems ...

ANSYS AEDT HFSS / RF Option (EMIT)

5.9 GHz Antenna System Simulations

e

Thank You!!!

• Connect with Me

Laila.Salman@ANSYS.com

- Connect with ANSYS, Inc.
 - LinkedIn ANSYSInc
 - Twitter @ANSYS_Inc
 - Facebook ANSYSInc
- Follow our Blog ansys-blog.com

