

Advances in Technology and Design of Ultra Wideband millimeter wave planar and non-planar diplexers for applications up to 100GHz

Irfan Ashiq

AGENDA

- Introduction
- Theory on contiguous diplexers
- Design and comparison of planar and non-planar diplexers up to 100GHz
- Application of contiguous diplexer
- Challenges in implementing diplexer with stringent specification
- Conclusion

Introduction

- Diplexers/Multiplexers are key components in RF application for splitting/combining frequency bands;
 - Instantaneous Frequency Measurements (IFM)
 - Millimeter Wave Transceivers for automotive, 5G wireless applications etc.
 - Broadband instruments
 - Imaging sensors

Theory on contiguous diplexers

 For contiguous diplexer design all frequency points must meet the following conditions and both filters should be complementary to each other:

$$Y_{in} = Y_{in,LP} + Y_{in,HP} = Y_o$$

$$Re(Y_{in,LP}) + Re(Y_{in,HP}) = Y_o$$

$$Im(Y_{in,LP}) + Im(Y_{in,HP}) = 0$$

(NOTE: Yo is the pure real reference admittance)

Design of Planar DC-66-100GHz diplexer

Material Characteristics for a Contiguous Planar DC-66-100GHz diplexer

- Key Characteristics of Roger's Liquid Crystal Polymer (LCP)
 Ultralam 3850
 - Excellent mm-wave properties (ε_r =2.9, tan δ =0.002)
 - Does not have woven glass
 - Min dispersion (LCP thickness of 0.002")
 - Flatter group delay across the passband
 - Very low radiation

Design Details

Lowpass singly terminated filter:

- Tchebychev 13 section filter with fc at 66 GHz
- LC lowpass is synthesized with $\lambda/8$ series short-circuited and shunt open-circuited stubs

Highpass singly terminated filter:

- Tchebychev 11 section complementary filter, fc at 66 GHz
- LC highpass is synthesized to series capacitive broadside coupled sections and high impedance $\lambda/2$ inductive resonators

Physical Implementation

SOFT BOARD

- RO 3850 softboard with dielectric constant of 2.9
- Etch tolerance of better that 0.0127 mm
- Vias spaced $\frac{\lambda}{20}$ at highest frequency

HOUSING

- Brass top and bottom housing with Ni/Au plating
- 0.25 mm diameter sapphire rod used as tuning element

Simulated vs Measured result

Design of Non-Planar DC-66-100GHz diplexer

Design of Non-Planar DC-66-100GHz diplexer

Lowpass section is realized with 13th order stepped impedance resonators

• Implemented using series $\lambda/8$ high impedance and shunt $\lambda/2$ low impedance

SSL Low Pass

resonators.

Common Input

 Highpass filter implemented with single capacitive broadside coupled section connected to a E-Plane stub suspended in a rectangular waveguide

Highpass series coupled section

- Implemented by overlapped coupled sections between resonators in Suspended Stripline (SSL)
- Capacitance value depends on overlap length

Cs and Cp values can be determined using:

$$C_s = j \frac{y_{21}|_{f=f_o}}{2\pi f_o}$$
 $C_p = j \frac{(y_{11} + y_{21})|_{f=f_o}}{j2\pi f_o}$

Y-matrix extracted from the EM model of the overlap coupled section:

$$Y = \begin{bmatrix} Y_{11} & Y_{21} \\ Y_{12} & Y_{22} \end{bmatrix} \qquad y_{21} = y_{12} \text{ and } y_{11} = y_{22}$$

 Overlap structure follows reciprocity, hence ni.com

Physical Implementation 100GHz hybrid diplexer

HOUSING

- Brass top and bottom housing with Ni/Au plating
- 0.25 mm diameter sapphire rod used as tuning element
- Non-Standard to WR-10 transition at the highpass port

Simulated versus Measured results

Comparison of two design approaches

Performance Comparison between planar and nonplanar diplexer

Performance parameters	Planar	Non-Planar		
Insertion loss at cross-over (dB)	7 (66GHz)	5 (66.5GHz)		
Input port match (dB)	>8 (DC-100GHz)	>10 (DC- 100GHz)		
Band selectivity +/- 2GHz from cross-over (dB)	>20 (67GHz)	>30 (67GHz)		
Highpass max frequency (GHz)	100	110		

Application of contiguous diplexer

Real-time oscilloscope front-end

P. Pupalaikis, B. Yamrone, R. Delbue, A.S. Khanna, K. Doshi, B. Bhat, and A. Sureka, "Technologies for Very High Bandwidth Real-time Oscilloscope," IEEE Bipolar/BiCMOS Circuits and Tech. Meetings (BCMT), Oct. 2014.

Challenges in implementing diplexer with stringent specification

Phase linearity

- In the digital data acquisition domain, the lowpass and highpass S-parameters in vector form are required to add up in magnitude to compensate for the loss at the crossover
- Sum of the magnitudes of vectors can add up constructively, if and only if both lowpass and highpass vectors are in phase.

$$|\overline{S_{LP+HP}}| > |\overline{S_{LP}}|$$
 and $> |\overline{S_{HP}}|$

• In order to be in-phase the angle between the lowpass and highpass vectors are required to be in the range of 0-90 degrees

Phase variation $\overline{S_{HP}} - \overline{S_{LP}}$ at cross over frequency for hybrid diplexer at 66.5GHz

- Theoretical the phase difference of $\overrightarrow{S_{HP}} \overrightarrow{S_{LP}}$ is required to be constant over the frequency band of interest.
- Blue trace represents the phase of highpass and green trace is the phase of lowpass in +/- 2GHz around the cross over region
- Phase variation from 66 to 67GHz with 66.5GHz center is only 8 degrees.

Phase variation $\overrightarrow{S_{HP}} - \overrightarrow{S_{LP}}$ at cross over frequency for planar diplexer at 66.5GHz

 The phase difference between lowpass (S21) and highpass (S31) is required to in the range of 0 to 90 degrees for constructive vector addition.

Measured Group delay comparison

LOWPASS	GD @ 30GHz (pS)	GD @ 66.3GHz (pS)	Variation (pS)	HIGHPASS	GD @ 85GHz (pS)	GD @ 66.3GHz (pS)	Variation (pS)
LP	108.6	246.6	138	HP	119.4	221.2	101.8
(meas)				(meas)			
LP (sim)	43.3	151.8	108.5	HP (sim)	59.3	168.1	108.8

Optimizing the input junction for the planar diplexer

• Δ LHP and Δ LLP:

- Lengths are optimized to avoid undesired phase shift variation around cross over
- These play a critical role in improving return loss at the cross over

Conclusion

- Validation of material performance up to 110GHz
- Ability to integrate with other planar and waveguide structures
- Demonstrated improved performance of non-planar waveguide compared to planar diplexer
- Highlighted application for contiguous diplexer in cascaded fashion in Test and Measurement domain.

Questions?

