

Practical Channel Modeling for High-speed Design

Bert Simonovich Lamsim Enterprises Inc. Isimonovich@lamsimenterprises.com

High-level Design Challenges

Choosing appropriate diff pair geometry, board material and stackup to meet insertion loss budgets for industry standards can be overwhelming

Transmission Line Modeling

Important to model dielectric and conductor loss accurately

 $IL_{total}(f) = IL_{diel}(f) + K_{SR}(f) \times IL_{conductor}(f)$

Failure To Model Roughness Properly Can Ruin You Day!

With just 3.2dB delta @12.5 GHz => ½ the eye height with rough copper

25Gb/s

Dielectric Properties

Failure to correct D_k from data sheet due to conductor roughness => inaccuracy in simulated IL & Phase Delay

EDA Tool Challenges

 Many EDA tools include latest and greatest models for conductor surface roughness and wideband dielectric properties

But obtaining the right parameters to feed models is always a challenge

Design Feedback Method

Benefits:

- Practical
- Accurate

Issues:

- Expertise required
- Time
- Money
- Extracted parameters only accurate for sample from which they were extracted

"Sometimes an OK answer NOW! is better than a good answer late...." – Eric Bogatin

What You Will Learn

- ✓ How to apply my Cannonball model to determine Huray roughness parameters from data sheet alone
- ✓ How to determine D_{keff} due to roughness from data sheets alone
- ✓ How to apply these parameters in the latest version of Polar Si9000e Field Solver
- ✓ How to pull it all together using Keysight ADS software

Outline

- Overview
- Modeling Conductor Roughness:
 - Hammerstad Model
 - Huray Model
 - Cannonball-Huray Model
- *D_{keff}* Due to Roughness Model
- Model Validation
- Practical Channel Modeling for High-speed Design Case Study

Overview

Copper Foil Manufacturing Processes

- Smoother
- Higher Cost

- Rougher
- Lower Cost

Common ED Roughness Profiles

IPC Standard Profile

IPC Very Low Profile(VLP)

Ultra Low Profile (ULP)Class

No min/max spec

< 5.2 µm max

-Other names: HVLP, VSP -No IPC spec -Typically < 2 μ m max

ED Copper Foil Nodulation Treatment

Drum Side Untreated

Matte Side Untreated

Drum Side Treated OR

Matte Side Treated

Oxide/Oxide Alternative Treatment

During PCB fabrication untreated copper on each side of core laminate undergoes a roughening treatment to promote adhesion

Roughness Parameters

RMS (R_a) / Average (R_a)

Foil Bonding to Core

Standard Treated Foil

Drum Side Untreated

Drum Side Untreated

Reverse Treated Foil (RTF)

✓ Treated Side of Raw Foil Always Bonds to Core

Modeling Conductor Roughness

"All models are wrong but some are useful..." - Sir David Roxbee Cox

Hamerstad & Jenson Model

 $\Delta = RMS$ tooth height in meters

Loses accuracy above ~ 3-15GHz depending on roughness of copper

Huray "snowball" Model [5]

SEM Photo Reference [15]

Based on non-uniform distribution of spheres resembling "snowballs" applied to a matte base

$$K_{SRH}\left(f\right) = \frac{P_{rough}}{P_{flat}} \approx \frac{A_{matte}}{A_{flat}} + \frac{3}{2} \sum_{i=1}^{j} \left(\frac{N_i \times 4\pi a_i^2}{A_{flat}}\right) \left(1 + \frac{\delta(f)}{a_i} + \frac{\delta^2(f)}{2a_i^2}\right)^{-1}$$

Huray Model Prior Art [6]

SEM Photo Reference [15]

Assumes stacked "snowballs" arranged in hexagonal lattice

11 spheres min; 38 spheres max of radius 1μ m to fit within hex tile area and height of 5.8μ m

Fit equation parameters to measured data

Cannonball-Huray Model [3]

Modeling D_{keff} Due to Surface Roughness

Marketing Data Sheet Issues

		Typical Values									
Pro	perty			Units	Test Helhod						
		Typical Value	Specification	Metric (English)	IPC-TM-650 (or as noted)						
Glass Transition Temperature (Tg) by DSC	:	200	170-200	°C	2.4.25						
Decomposition Temperature (Td) by TGA	© 5% weight loss	360	and the second second	°C	ASTM D3850						
T260		60	-	Minutes	ASTM D3850						
T288		>30	-	Minutes	ASTM D3850						
CTE, Z-axis	A. Pre-Tg B. Post-Tg	55 230	Maus -	ppm/PC	2.4.24						
CTE, X-, Y-axes	A. Pre-Tg B. Post-Tg	16 18	AVBUS -	ppm/*C	2.4.24						
Z-axis Expansion (50-260°C)		2.8	-	%	2.4.24						
Thermal Conductivity		0.4	-	W/mK	ASTM D5930						
Thermal Stress 10 sec @ 288°C (550.4°F)	A. Unetched B. Etched	Pass	Pass Visual	Rating	2.4.13.1						
Dk, Permittivity Laminate & prepreg as laminated) Fested at 66% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline)	3.72 3.69 3.68 3.64 3.65	5.4 - -		2.5.5.3 2.5.5.9 2.5.5.5 2.5.5.5 2.5.5.5						
Df, Loss Tangent Laminate & prepreg as laminated) Fested at 66% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4285A) G. @ 2 GHz (Bereskin Stripine) D. @ 5 GHz (Bereskin Stripine) E. @ 10 GHz (Bereskin Stripine)	0.0072 0.0091 0.0092 0.0098 0.0095	0.035	1	2.5.5.3 2.5.5.9 2.5.5.5 2.5.5.5 2.5.5.5						
Volume Resistivity	A. 96/35/90 B. After moisture resistance C. At elevated temperature	4.4x10 ⁷ 9.4x10 ⁷	1.0x10 ⁶ 	MΩ-cm	2.5.17.1						
Surface Resistivity	A. 96/35/90 B. After moisture resistance C. At elevated temperature	2.6x10 [#] 2.1x10 [#]	1.0x10 ⁴	MΩ	2.5.17.1						
Dielectric Breakdown		>50	-	KV	2.5.6						
Arc Resistance		137	60	Seconds	2.5.1						
Electric Strength (Laminate & prepreg as	laminated)	70 (1741)	30 (750)	kW/mm (W/mil)	2.5.6.2						
Comparative Tracking Index (CTI)		3 (175-249)	-	Class (Volts)	UL-746A ASTM D3638						
Peel Strength	A Low profile copper toil and very low profile – all copper weights >17 microns B. Standard profile copper 1. After thermal stress 2. At 125°C (257°F) 3. After process solutions	1.14 (6.5) 0.96 (5.5) 0.90 (5.1)	0.70 (4.0) 0.80 (4.5) 0.70 (4.0) 0.55 (3.0)	N/mm (Di/Inch)	2.4.8 2.4.8.2 2.4.8.3 - -						
Flexural Strength	A. Lengthwise direction B. Crosswise direction	72,500 58,000	-	Ib/Inch ²	2.4.4						
Tensile Strength	A. Lengthwise direction B. Crosswise direction	54,525 38,678	-	Ib/Inch ²	-						
Young's Modulus	A. Grain direction B. Fill direction	3695 3315	-	ksl	w						
Poisson's Ratio	A. Grain direction B. Fill direction	0.137 0.133	-	-	x						
Moisture Absorption		0.061	-	%	2.6.2.1						
Flammability (Laminate & prepreg as lam	linated)	V-0	-	Rating	UL 94						
Max Operating Temperature		130	UL Cert	°C	-						
he data, while believed to be accurate and bas erms and conditions of the agreement under w	ed on analytical methods considered to be reliable trich they are sold.	e, is for information pu	rposes only. Any sales of	these products will t	be governed by the						

Dk, Permittivity (Laminate & prepreg as laminated) Tested at 56% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline)	3.72 3.69 3.68 3.64 3.65	5.4 - - -	_	2.5.5.3 2.5.5.9 2.5.5.5 2.5.5.5 2.5.5.5 2.5.5.5
Df, Loss Tangent (Laminate & prepreg as laminated) Tested at 56% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline)	0.0072 0.0091 0.0092 0.0098 0.0095	0.035 - - -	_	2.5.5.3 2.5.5.9 2.5.5.5 2.5.5.5 2.5.5.5 2.5.5.5

Using Dk/Df numbers from marketing data sheets for stackup and channel modeling will give inaccurate results

Engineering Data Sheets

Core Data

Core	Resin	Thickness	Thickness	Dielectric Constant(DK) / Dissipation Factor(DF)									
Constructions	Content (%)	(inch)	(mm)	100 MHz	500 MHz	1.0 GHz	2.0 GHz	5.0 GHz	10.0 GHz	15.0 GHz	20.0 GHz		
4 499	70.0			3.37	3.36	3.34	3.32	3.30	3.30				
1×106	72.0	0.0020 ZBC	0.0508 ZBC	0.0075	0.0089	0.0096	0.0101	0.0107	0.0107				
				3.42	3.40	3.38	3.36	3.34	3.33				
1X1067	69.0	0.0025	0.0635	0.0075	0.0084	0.0095	0.0100	0.0105	0.0104				
1		0.0005	0.0005	3.67	3.64	3.62	3.61	3.60	3.59				
1X1080	57.0	0.0025	0.0635	0.0071	0.0079	0.0089	0.0092	0.0097	0.0095				
				3.65	3.63	3.60	3.59	3.57	3.57				
1x1086	58.0	0.0030	0.0762	0.0072	0.0079	0.0091	0.0092	0.0098	0.0095				
				3.54	3.52	3.50	3.48	3.47	3.47				
1x1080	1x1080 63.0		0.0762	0.0074	0.0082	0.0092	0.0096	0.0102	0.0101				
	51.0	0.0035		3.82	3.79	3.77	3.77	3.74	3.74				
1x3313	1x3313 51.0		0.0889	0.0068	0.0076	0.0084	0.0087	0.0092	0.0090				
				3.46	3.45	3.42	3.40	3.38	3.37				
2x106	67.0	0.0035	0.0889	0.0074	0.0083	0.0094	0.0098	0.0104	0.0102				
	1080 59.0 0.			3.63	3.61	3.58	3.57	3.55	3.54				
106/1080		0.0040	0.1016	0.0072	0.0080	0.0090	0.0093	0.0098	0.0096				
				3.72	3.70	3.68	3.66	3.65	3.65				
1x3313	55.0	0.0040	0.1016	0.0071	0.0077	0.0087	0.0090	0.0095	0.0094				
				3.57	3.56	3.54	3.52	3.51	3.50				
106/1080	106/1080 61.0	0.0043	0.1092	0.0073	0.0081	0.0092	0.0095	0.0099	0.0098				
				3.54	3.52	3.50	3.48	3.47	3.47				
2x1067	63.0	0.0043	0.1092	0.0074	0.0082	0.0092	0.0096	0.0102	0.0101				
				3.55	3.54	3.52	3.50	3.48	3.48				
106/1080	62.0	0.0045	0.1143	0.0073	0.0082	0.0092	0.0095	0.0100	0.0098				

Provides:

- ✓ Actual core/prepreg thicknesses
- ✓ Resin content
- ✓ Dk(f) /Df(f) for
 different glass styles

Dielectric Modeling Issue

When Data Sheet D_k is not the same as Effective D_k

IPC-TM-650 Clamped Stripline Resonator Test Method [14]

Issue:

Since resonant element pattern card & material U.T. not physically bonded together => small air gaps between various layers & conductor roughness affects published results

Published D_k not same as D_{keff} due to roughness

Side View (Clamped) N.T.S.

D_{keff} Due to Roughness Model [1]

FR408HR/RTF Simulation Results for D_{keff}

Causal Roughness Correction Factors [4]

A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics [4]

 D_{keff} corrected due to roughness and complex roughness correction factor applied

✓ Excellent Results!

Model Validations

CMP-28 Test Platform [7]

Features:

- FR408HR material with reverse-treated foil (RTF)
- Assembled with 2.92mm (CMP-28) or 2.4mm (CMP-32) connectors
- 3D EM benchmark structures
 - Loss structures for material extraction
 - Resonators for measurement correspondence
 - Multi-impedance structures for VNA time transform analysis

Applications:

- 3D-EM and measurement assistance for the SI practitioner
 - Vias
 - Multimode Analysis
 - Meshing Analysis Structure
 - Advanced Material Extraction and Loss Modeling
- THRU Calibration, T-matrix de- embedding
- Advanced Crosstalk analysis
- TRL/LRM Calibration Verification/Benchmark

FR408HR/RTF Data Sheet & Test Board Design Parameters [7],[9],[11]

Parameter	FR408HR/RTF			
D_k Core/Prepreg	3.65/3.59 @10GHz			
D_f Core/Prepreg	0.0094/0.0095 @ 10GHz			
R_z Drum side	3.048 μm			
R_z Before Micro-etch-Matte side	5.715 μm			
R_z After 50 μ in (1.27 μ m) Micro-etch				
treatment -Matte side	4.445 μm			
Trace Thickness, t	1.25 mils (31.73 μ m)			
Trace Etch Factor	60 deg taper			
Trace Width, w	11 mils (279.20 μ m)			
Core thickness, H1	12 mils (304.60 μ m)			
Prepreg thickness, H2	10.6 mils (269.00 μ m)			
De-embedded trace length	6.00 in (15.24 cm)			

MLS RT foil

Determine D_{keff} Due to Roughness Core/Prepreg

$$D_{keff_prepreg} = \frac{H_{2_smooth}}{\left(H_{2_smooth} - 2R_{z_matte}\right)} \times D_{k_prepreg} = \frac{269\,\mu m}{\left(269\,\mu m - 2 \times 4.445\,\mu m\right)} \times 3.59 = 3.713$$

$$D_{keff_core} = \frac{H_{1_smooth}}{\left(H_{1_smooth} - 2R_{z_drum}\right)} \times D_{k_core} = \frac{304.6\,\mu m}{\left(304.6\,\mu m - 2 \times 3.048\,\mu m\right)} \times 3.65 = 3.725$$

Determine Sphere Radius (r) & Base Area (A_{flat})

Drum-side

Input Design Parameters Polar Si9000e [12]

41

_

Graph Settings

Display Series

Dielectric Constant (Er)

Picked Data Point Information

Close

*

Simulated vs Measured

Insertion Loss

Phase

✓ Excellent Correlation!

FR408HR Simulation Results for Impulse and TDR

4-9-4 7-9-7 4-9-4

Well...single-ended looks great.....BUT how well does this method work to model a practical backplane channel with diff pairs?

ExaMax Demonstrator Platform

- Design Intent 28 GB/s NRZ
- Meg 6 or N4000-13EPSI Options
 - Nelco N4000-13EPSI Version Used
- MW-G-VSP ¹/₂ oz. foil (VLP)
- 2.9 mm coax connectors
- Case 1 = 8.25" (20.25") L12
- Case 2 = 14.80" (26.8") L10
- Case 3 = 20.22" (32.22") L10
- Case 4 = 26.70" (38.70") L12

Loss Topology Model N4000-13EPSI Summary

Data Sheet Parameters [10], [11]

N4000-13 SI[®] / N4000-13EP SI[®] – Dielectric Properties Table

	Thickness	8	Tol.		Construction	RC%		2GH	iz Dk	2	GH	iz Df	10	G	łz Dk	10	Gł	Hz Df
3	0.0020 0.0020 0.0025 0.0030	± ± ± ±	0.0005 0.0005 0.0005 0.0005	1 1 1	106 1035 1078 1078	69% 67% 58% 64%	3.04 3.07 3.19 3.11	* * * *	0.056 0.024 0.037 0.020	0.0082 0.0081 0.0077 0.0079	* * * *	0.00021 0.00009 0.00014 0.00007	3.02 3.04 3.16 3.08	± ± ± ±	0.055 0.024 0.037 0.020	0.0086 0.0085 0.0080 0.0083	± ± ± ±	0.00023 0.00010 0.00016 0.00008
DC Core	0.0025 0.0030 0.0035 0.0040	± ± ±	0.0005 0.0005 0.0005 0.0005	1 1 2	1080 1080 2013 1035	58% 64% 50% 67%	3.19 3.11 3.29 3.07	± ± ±	0.048 0.029 0.027 0.010	0.0077 0.0079 0.0072 0.0081	± ± ±	0.00018 0.00011 0.00010 0.00004	3.16 3.08 3.27 3.04	± ± ±	0.048 0.029 0.027 0.010	0.0080 0.0083 0.0075 0.0085	± ± ±	0.00020 0.00012 0.00011 0.00004
	0.0040 0.0040 0.0050	± ±	0.0005	1 1 1 2	2013 2116 2116	57% 45% 56%	3.19 3.38 3.21 2.10	± ± ± +	0.012 0.029 0.001	0.0076 0.0069 0.0076	± ± ± ±	0.00005 0.00011 0.00000	3.17 3.35 3.18	± ± ±	0.012 0.029 0.001	0.0079 0.0072 0.0079	* * * *	0.00005 0.00012 0.00001
BP Core	0.0050 0.0060 0.0060	± + ±	0.0007	2222	1078 1080 1080	50% 64% 58% 64%	3.11 3.19 3.11	± + ±	0.004 0.026 0.013	0.0079 0.0077 0.0079	± ± ±	0.00002 0.00010 0.00005	3.08 3.16 3.08	± + ±	0.015	0.0083 0.0080 0.0083	± + ±	0.00002 0.00011 0.00006
	0.0070	±	0.001	2	2013	50%	3.29	±	0.027	0.0072	±	0.00010	3.27	±	0.027	0.0075	±	0.00011

	Glass	RC%	2 GHz Dk	2GHz Df	10GHz Dk	10GHz Df	Thickness (inches)
	106	75	2.98	0.0084	2.95	0.0088	0.0025
	1035	75	2.98	0.0084	2.95	0.0088	0.0030
BP/DC	1078	65	3.09	0.0080	3.06	0.0084	0.0032
Broprog	1080	65	3.09	0.0080	3.06	0.0084	0.0032
Freprey	2013	58	3.18	0.0077	3.15	0.0080	0.0044
	2116	55	3.22	0.0075	3.19	0.0078	0.0052

MITSUI KINZOKU CORPORATE GROUP

OAK-MITSUI

	μm	Rz (µm)	Tensile Strength (N/mm2)	Elogation (%)	Peel Strength (kg/cm)
	18	2.5	350	8	1.0
MW-G-VSP	35	2.5	350	16	1.3
	70	2.5	350	19	1.5

※表中の数値は代表値です。保証値ではありません。 This is representative date, not guarantee.

Performance Copper Foils

ラミ面/Laminate side

レジ面 / resist side

ExaMax Demonstrator Platform Data Sheet Design Parameters Summary

	N4000-13EPSI	N4000-13EPSI
Parameter	Backplane	Daughter Card
D_k Core/Prepreg @ $10GH_Z$	3.08/3.06	3.04/3.06
D_f Core/Prepreg @ $10GH_Z$	0.0083/0.0084	0.0085/0.0084
<i>R_z</i> Matte side	2.5 μm	2.5µm
R_{z} Drum side w/OA	1.5 <i>µ</i> m	1.5 μm
Trace Thickness, t	0.6 mils	0.6 mils
		4.9 mils (Diff)
Trace Width, w_1	6.3 mils	5.4 mils (SE)
		4.3 mils (Diff)
Trace Width, w_2	5.7 mils	4.8 mils (SE)
Trace Separation, s	5.7 mils	6.1 mils
Core thickness, H1	6 mils	4 mils
Prepreg thickness, H2	5.8 mils	5.8 mils

Determine $D_{ke\!f\!f}$ Due to Roughness Core/Prepreg

Determine Sphere Radius (r) & Base Area (A_{flat})

Matte-side

Polar ExaMax Daughter Card SE Trace Parameters

Polar ExaMax Daughter Card Diff Trace Parameters

Polar ExaMax Backplane Diff Trace Parameters

^{**}Length of Line (LL) Adjusted for 8.25"; 14.80"; 20.22"; 26.70"

Generic Topology Model

ExaMax Backplane Case 1 Total Length = 20.25"

ExaMax Backplane Case 2 Total Length = 26.80"

ExaMax Backplane Case 3 Total Length = 32.22"

ExaMax Backplane Case 4 Total Length = 38.70"

---- Measured ---- Simulated

Generic Channel Model

Channel Simulation 28 GB/s Case 1 Total Length = 20.25"

Channel Simulation 28 GB/s Case 4 Total Length = 38.7"

Summary

By using Cannonball-Huray model, with copper foil roughness and dielectric material properties obtained solely from manufacturers' data sheets, a practical method of modeling high-speed differential channels is now achievable using commercial field-solving software employing Huray model.

References:

- 1. B. Simonovich, "A Practical Method to Model Effective Permittivity and Phase Delay Due to Conductor Surface Roughness". DesignCon 2017, Proceedings, Santa Clara, CA, 2017
- 2. B.Simonovich, "Practical Method for Modeling Conductor Surface Roughness Using Close Packing of Equal Spheres", DesignCon 2015 Proceedings, Santa Clara, CA, 2015
- 3. B.Simonovich, "Practical Model of Conductor Surface Roughness Using Cubic Close-packing of Equal Spheres", EDICon 2016, Boston
- 4. V. Dmitriev-Zdorov, B. Simonovich, Igor Kochikov, "A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics", DesignCon 2018 Proceedings, Santa Clara, CA, 2018
- 5. Lamsim Enterprises Inc., Stittsville, Ontario, Canada, <u>http://lamsimenterprises.com/</u>
- 6. Huray, P. G. (2009) "The Foundations of Signal Integrity", John Wiley & Sons, Inc., Hoboken, NJ, USA., 2009
- 7. Wild River Technology LLC 8311 SW Charlotte Drive Beaverton, OR 97007. URL: http://wildrivertech.com/home/
- 8. Simberian Inc., 3030 S Torrey Pines Dr. Las Vegas, NV 89146, USA,
- 9. Isola Group S.a.r.l., 3100 West Ray Road, Suite 301, Chandler, AZ 85226. URL: http://www.isola-group.com/
- 10. Park Electrochemical Corp. Nelco Digital Electronic Materials, http://www.parkelectro.com/
- 11. Oak-mitsui 80 First St, Hoosick Falls, NY, 12090. URL: http://www.oakmitsui.com/pages/company/company.asp
- 12. Polar Instruments Si9000e [computer software] Version 2017, https://www.polarinstruments.com/index.html,
- 13. Keysight Advanced Design System (ADS) [computer software], (Version 2016). URL: http://www.keysight.com/en/pc-1297113/advanced-design-system-ads?cc=US&lc=eng.
- 14. IPC-TM-650, 2.5.5.5, Rev C, Test Methods Manual, "Stripline Test for Permittivity and Loss Tangent (Dielectric Constant and Dissipation Factor) at X-Band", 1998
- 15. Huray, P.G.; Hall, S.; Pytel, S.; Oluwafemi, F.; Mellitz, R.; Hua, D.; Peng Ye, "Fundamentals of a 3-D "snowball" model for surface roughness power losses," Signal Propagation on Interconnects, 2007. SPI 2007. IEEE Workshop on , vol., no., pp.121,124, 13-16 May 2007 doi: 10.1109/SPI.2007.4512227
- 16. E. Bogatin, D. DeGroot, P.G. Huray, Y.Shlepnev, "Which one is better? Comparing Options to Describe Frequency Dependent Losses," DesignCon 2013, vol. 1, 2013, pp. 469-494
- 17. ISOLA-Group, "Copper Foil 102 Presentation", 2012
- 18. J. A. Marshall, "Measuring Copper Surface Roughness for High Speed Applications", https://electronics.macdermidenthone.com/application/files/3114/9865/4440/Measuring Copper Surface Roughness for High Speed Applications IPC EXpo 2015 Marshall.pdf
- 19. J. Fuller; K. Sauter, "The Impact of New Generation Chemical Treatment Systems on High Frequency Signal Integrity", IPC APEX 2017 http://www.circuitinsight.com/pdf/impact_new_generation_chemical_treatment_systems_ipc.pdf
- 20. Mentor Hyperlynx [computer software] URL: https://www.mentor.com/pcb/hyperlynx/

Thank You!

Lamsimenterprises.com