EM Verification Within a Custom IC Design Platform

Method-of-Moments EM for Silicon Design

Dr. John Dunn Electromagnetic Technologist AWR Group, NI

Agenda

- Part 1: AXIEM simulator works in Virtuoso RF
 - Who is NI, AWR Group?
 - What is AXIEM software?
- Part II: Why AXIEM software for silicon?
 - Full-wave, planar EM simulator
 - Efficient mesh and solve engines
 - Used for distributed structures such as spiral inductors
- Part III: Important issues when using AXIEM simulator
 - Ports and grounds
 - Meshing and Q
 - How the Simulator Solves
- Conclusions

National Instruments

2018
Electronic Design Innovation
Conference & Exhibition

Markets Served Lab & production test systems & control systems

Annual Revenue >\$1.3 billion

Global Operations > 7,000 employees

Largest Segment Semiconductor

National Instruments Role in Semiconductor & Module Design Flow

NI playing a bigger role in the semiconductor market

- Many companies using NI in lab characterization
- RF design tools, SDR wireless prototyping
- STS semiconductor production test platform

Lab Characterization

LabVIEW + PXI

Production Test

STS – Semiconductor Test
System AWR ni.com/awr

AWR Products

A unified system, chip, board, and module high-frequency design platform

AXIEM EM Simulator

Gridless, method-of-moments, open boundary 3D planar solver

- Solves for currents on horizontal metal and vertical vias
- Planar, dielectric layers
- Sounds like a silicon chip! ... or a board! ... or a package!
- Generates S-parameters
- Flexible port options
 - Ground references many options
 - Placement of port interior or edge
- Mesh
 - Surface of metal meshed
 - Thick or thin metal.
- Shape simplification rules
 - Merges vias and simplifies currents
- High capacity / speed solve
 - Iterative multipole O(NlogN)

Traditional AXIEM Flow in Microwave Offices Software for Cadence

1. Import layout from Virtuoso

2. Set up ports and simulation settings

3. Generate S-parameters

4. Put in circuit simulator

Simulator options

Conference & Exhibition

Export to Cadence

Import Spectre netlistrun Microwave Office APLAC engine

New Flow in Virtuoso – Golden Schematic Flow (IC Layout)

2018
Electronic Design Innovation
Conference & Exhibition

Design Optimization and Layout Verification via Single Schematic

Axiem Model in Virtuoso RF

Process Setup: PDK ict/qrcTechFiles

All setup is in Virtuoso Model Assistant

Simulation Settings

AXIEM simulator is running in the background

Preview Mesh

Extract S-Parameters With AXIEM Simulator


```
\bigcirc \bigcirc
     axiem model.xml
Input file: model.xml
 Simulating model1 using Advanced Frequency Sweep (64-bit Linux: V14.0.9089) - Reserve 8 Threads
               Meshing Geometry - Elapsed time ( 00:00:0.47 )
                        Mesh Freq = 10 GHz
                        # of Facets = 1118
                        # of Unknowns = 1869
                        # of Nets = 3
                        # of Ports = 5
    --- Calculating DC solution
               ---- Candidate Solver Tupe : Direct (low frequency)
               ---- Calculating Greens Functions -----
               ---- Matrix Setup -----
                        - Elapsed time ( 00:00:14.27 )
               ---- Matrix Solve ----
                        - Elapsed time ( 00:00:0.01 )
               ---- Simulating DeEmbedding Standards ----
                          Port 1, 2, 3, 4, 5: not de-embedded
                        - Elapsed time ( 00:00:0.00 )
    --- Solution @ DC - Elapsed time ( 00:00:14.29 )
    --- Calculating Solution @ 10 GHz
               ---- Candidate Solver Type : Direct (high frequency)
               ---- Calculating Greens Functions ----
               ---- Matrix Setup -----
                        - Elapsed time ( 00:00:11.28 )
               ---- Matrix Solve -----
                        - Elapsed time ( 00:00:0.01 )
               ---- Simulating DeEmbedding Standards ----
                          Port 1, 2, 3, 4, 5: not de-embedded
                        - Elapsed time ( 00:00:0.00 )
    --- Solution @ 10 GHz - Elapsed time ( 00:00:11.31 )
    --- Solution @ O Hz was calculated in a previous simulation
    --- Solution @ 10 GHz was calculated in a previous simulation
    --- Calculating Solution @ 5 GHz
               ---- Candidate Solver Type : Direct (low frequency)
               ---- Calculating Greens Functions ----
```


Extracted View Creation

- Replaces model in schematic with S-parameters
- Layout remains so don't break LVS,...

Extracted View Creation

Extracted View Creation

Back Annotation: S-Parameters in Extracted View

TII.CUIII/awi

VCO Results

Why EM Simulation for Analog Silicon?

2018
Electronic Design Innovation
Conference & Exhibition

- Traditional analog flow silicon
 - Device models field-effect transistors (FETs), ...
 - Nets treated as parasitics modeled as "lumped" elements
 - Traditionally an RC extraction
 - More recently, inductance included higher frequencies
- Traditional III-V flow gallium arsenide (GaAs), gallium nitride (GaN)
 - Nets are included as distributed line models.
 - EM simulation is used for: checking models, coupling between elements, no model

GaAs power amplifier chip

Places Where EM Simulation is Useful for Silicon

- EM simulation in silicon
 - Distributed structures inductors
 - Coupling between elements multiple inductors, pads, bond wires, ...
 - No model ground meshes, ground issues, frequency dependent loss
- Effects become more important with higher frequency
 - Electrical length is longer
 - Coupling more likely
 - Imperfect ground more of an issue
 - Skin depth in metal loss is changing
 - For instance, skin depth of Al at 1 GHZ is ~ 2 microns
- ... And of course getting on and off the chip!
 - Modules and board transitions
 - Bondwires, ball-grid arrays (BGAs), and more

The Spiral ... Classic Example

RF Concepts

- Smith chart
- Port impedance
- Differential ports

Issues When Using EM Simulators - Ground

EDI CON 2018

- Ground is important for S-parameter definitions
 - Ports need a port ground definition
 - Where current comes from
 - Gives port voltage reference
- RF Concepts: S-parameter

Implicit grounded port

Series port and ground ring

Grounding Results and Q

Biggest difference is in the Q calculation, about 6%

RF Concept: Q

- Common figure of merit
- Notoriously hard to calculate
- Stored energy/loss
- Extremely sensitive to R
- Substrate loss usually dominates
- Different definitions of Q
- Grounding / return current matters
- Inductance is loop inductance

A More Single-Ended Example

Ports are farther apart Ground is at infinity

Looks like an R L load – Port 2 is a 50-ohm load

Issues When Using EM Simulators - Mesh

1840 Unknowns

8800 Unknowns

Q Meshing - Results

Conclusions

- AXIEM best-in-class planar 3D EM simulator
 - Planar dielectrics, metal and vias like silicon!
 - Integrated into Virtuoso
- EM simulators can be useful in silicon when:
 - Distributed effects matter inductors
 - Frequency-dependent effects matter resistance
 - Grounding issues ground meshes, rings
 - Coupling effects
- EM simulator results depend on:
 - Grounding definitions of ports
 - Meshing

Appendix

AXIEM simulator and fast solvers

Meshing the Circuit

 Usually thick metal is used on chip

y15 Discontinuity The Mesh is determined by "reasonable" assumptions **Puts smaller** meshes "Edge Meshing" where need them

Need to determine (complex) height of rooftops

The mesh should capture the "look and feel" of the current:

- Continuous
- Differentiable dI/dx = -jwQ
- Both X and Y directions
- •Z direction for vias

"Rooftop" Basis Function

- Varies linearly in x
- Constant in y

Making the Matrix

The Completed Matrix Equation

Only the cells on the impressed voltage gap give a non-zero contribution

Theoretical Time to Solve the Problem

The Matrix Solve – The Old Days

2018
Electronic Design Innovation
Conference & Exhibition

The matrix is NXN for N unknown currents.

- -It is dense. ... i.e. ... all elements are non-zero.
- To fill the matrix takes O(N2) time.
- To solve the matrix directly ... takes O(N³) time ... using Gauss's law.

Iterative Solvers – can work faster than O(N³).

They can be as fast as O(NlnN).

Details to follow...

AWR ni.com/awr

Fast Solvers

Matrix compression methods

- White et al 1994 precorrected FFT method
- Kapur et al 1997 IES³
- Jandhyala 2005 PILOT

Simplify the Matrix

Note: It is important to number the cells so that close cells have close numbers. Often a renumbering step must be carried out.

A Smaller Matrix

2018
Electronic Design Innovation
Conference & Exhibition

If the elements of A are about the same ... we only need a few terms.

Image Compression

Original Image

572 X 572

k = 8

8*2*572

2.8 % of original data

A Smaller Matrix - 2

k = 64

64*2*572

11.1 % of original data

k = 128

128*2*572

22.2 % of original data

Condition Number of a Matrix

Moment method matrices are dense

Can't set to 0

- Can't throw out any elements that are bigger than 1/condition number
- Example condition number = 1e6 ... Can't throw out an element 1e-6 big ... assuming largest element is 1
- For an iterative solver number of iterations ~ condition number

Bad things are going on ...

- Must have high accuracy-math
- Can't use any approximations
- Eventually just won't solve

When is the condition number bad?

